Section 2.3: Functions

Video 1

A relation is a set of ordered pairs.
A function is a relation in which, for each distinct value of the first component of the ordered pairs, there is exactly one value of the second component.

1) List the domain and range of each relation. Does the relation define a function?
a) $\{(-2,9),(3,2),(8,9)\} \quad$ b) $\{(4,2),(1,1),(0,0),(1,-1)\}$

Video 2
2) Give the domain and range of the given relation.

Video 3

3) Use the Vertical Line Test to determine if the relation that is graphed is a function.

Video 4

4) Determine whether each relation defines y as a function of x, and give the domain and the range.
a) $y=2 x-3$
b) $x=|y-3|$
c) $y \geq 5 x$
d) $y=\sqrt{x-4}$
e) $y=\frac{3}{x+6}$

Video 5

5) Let $f(x)=x^{2}+5 x-8$. Find the following.
a) $f(-3)$
b) $f(a)$
c) $f(n+5)$

Video 6

6) Assume y is a function f of x. Rewrite each equation as a function of x, and find $f(-6)$ and $f(3)$.
a) $3 x+4 y=20$
7) $y=x^{2}-6 x-10$

Video 7

On an open interval / containing the points x_{1} and x_{2},

- A function f is increasing if $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.
- A function f is decreasing if $f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.
- A function f is constant if $f\left(x_{1}\right)=f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.

7) For the given function, determine the intervals for which the function is increasing, decreasing =, and constant.

